首页 > 中学数学试题 > 题目详情
数学课上,张老师出示了问题:如图1,四边形ABCD是正方形, , , ∥, ∥点E是边BC的中点. ,且EF交正方形外角的角平分线CF于点F,求证:AE=EF. 经过思考,小明展示了一种正确的解题思路...
题目内容:
数学课上,张老师出示了问题:如图1,四边形ABCD是正方形, , , ∥, ∥点E是边BC的中点. ,且EF交正方形外角的角平分线CF于点F,求证:AE=EF.
经过思考,小明展示了一种正确的解题思路:取AB的中点M,连接ME,则AM=EC,易证,所以.
在此基础上,同学们作了进一步的研究:
(1)小颖提出:如图2,如果把“点E是边BC的中点”改为“点E是边BC上(除B,C外)的任意一点”,其它条件不变,那么结论“AE=EF”仍然成立,你认为小颖的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由;
(2)小华提出:如图3,点E是BC的延长线上(除C点外)的任意一点,其他条件不变,结论“AE=EF”仍然成立.你认为小华的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由.
本题链接: