首页 > 中学数学试题 > 题目详情
定义:有一组对角相等而另一组对角不相等的凸四边形叫做“等对角四边形”. (1)已知:如图1,四边形是“等对角四边形”, , , .求, 的度数. (2)在探究“等对角四边形”性质时: ① 小红画了一个...
题目内容:
定义:有一组对角相等而另一组对角不相等的凸四边形叫做“等对角四边形”.
(1)已知:如图1,四边形是“等对角四边形”, , , .求, 的度数.
(2)在探究“等对角四边形”性质时:
① 小红画了一个“等对角四边形”(如图2),其中, ,此时她发现成立.请你证明此结论.
② 由此小红猜想:“对于任意‘等对角四边形’,当一组邻边相等时,另一组邻边也相等”.你认为她的猜想正确吗?若正确,请证明;若不正确,请举出反例.
(3)已知:在“等对角四边形”中, , ,AB=AD=4,.求∠D和对角线的长.
本题链接: