首页 > 中学数学试题 > 题目详情
如图,在平面直角坐标系中,点A(,0),B(3,2),C(0,2).动点D以每秒1个单位的速度 从点0出发沿OC向终点C运动,同时动点E以每秒2个单位的速度从点A出发沿AB向终点B运动.过点E作EF上...
题目内容:
如图,在平面直角坐标系中,点A(,0),B(3,2),C(0,2).动点D以每秒1个单位的速度
从点0出发沿OC向终点C运动,同时动点E以每秒2个单位的速度从点A出发沿AB向终点B运动.过点E作EF上AB,交BC于点F,连结DA、DF.设运动时间为t秒.
(1)求∠ABC的度数;
(2)当t为何值时,AB∥DF;
(3)设四边形AEFD的面积为S.
①求S关于t的函数关系式;
②若一抛物线y=x2+mx经过动点E,当S<2时,求m的取值范围(写出答案即可).
本题链接: