首页 > 中学数学试题 > 题目详情
如图,点与分别是两个函数图象与上的任一点.当时,有成立,则称这两个函数在上是“相邻函数”,否则称它们在上是“非相邻函数”.例如,点与分别是两个函数与图象上的任一点,当时, ,通过构造函数并研究它在上的...
题目内容:
如图,点与分别是两个函数图象与上的任一点.当时,有成立,则称这两个函数在上是“相邻函数”,否则称它们在上是“非相邻函数”.例如,点与分别是两个函数与图象上的任一点,当时, ,通过构造函数并研究它在上的性质,得到该函数值得范围是,所以成立,因此这两个函数在上是“相邻函数”.
()判断函数与在上是否为“相邻函数”,并说明理由.
()若函数与在上是“相邻函数”,求的取值范围.
()若函数与在上是“相邻函数”,直接写出的最大值与最小值.
本题链接: