首页 > 中学数学试题 > 题目详情
如图,直线y=﹣x+3交y轴于点A,交x轴与点B,抛物线y=﹣x2+bx+c经过点A和点B,点P为抛物线上直线AB上方部分上的一点,且点P的横坐标为t,过P作PE∥x轴交直线AB于,作PH⊥x轴于H,...
题目内容:
如图,直线y=﹣x+3交y轴于点A,交x轴与点B,抛物线y=﹣x2+bx+c经过点A和点B,点P为抛物线上直线AB上方部分上的一点,且点P的横坐标为t,过P作PE∥x轴交直线AB于,作PH⊥x轴于H,PH交直线AB于点F.
(1)求抛物线解析式;
(2)若PE的长为m,求m关于t的函数关系式;
(3)是否存在这样的t值,使得∠FOH﹣∠BEH=45°?若存在,求出t值,并求tan∠BEH的值,若不存在,请说明理由.
本题链接: