求证一解析几何的定理.由于二次曲线C:ax^2+bxy+cy^2+dx+ey+f=0表示圆的充要条件是:a=c≠0;b=
2022-06-30 12:59:08 14次 反馈错误 加入收藏 正确率 : 100%
题目内容:
求证一解析几何的定理.
由于二次曲线C:ax^2+bxy+cy^2+dx+ey+f=0表示圆的充要条件是:a=c≠0;b=0;d^2+e^2-4af>0,于是我们不难得到下面的定理:
设椭圆mx^2+ny^2=1与直线ax+by+c=0有两个不同的交点,则过这两点的圆系方程为:mx^2+ny^2-1+λ(ax+by+c)(ax-by+k)=0 .这里λ=(n-m)/(a^2+b^2),k为任意实数.
本题链接: