首页 > 中学数学试题 > 题目详情
高数中值定理问题1、设f(x)在闭区间[-1,1]上连续,在开区间(-1,1)内可导,且|f'(x)|≤M,f(0)=0
题目内容:
高数中值定理问题
1、设f(x)在闭区间[-1,1]上连续,在开区间(-1,1)内可导,且|f'(x)|≤M,f(0)=0,则必有
A |f(x)|≥M B |f(x)|>M C f(x)|≤M D f(x)|<M
2、若f(x)在开区间(a,b)内可导,且对(a,b)内任意两点x1、x2,恒有|f(x2)-f(x1)|≤(x2-x1)^2,则必有
A f'(x)≠0 B f'(x)=x C f(x)=x D f(x)=C(常数)
高数中值定理问题
1、设f(x)在闭区间[-1,1]上连续,在开区间(-1,1)内可导,且|f'(x)|≤M,f(0)=0,则必有
A |f(x)|≥M B |f(x)|>M C f(x)|≤M D f(x)|<M
2、若f(x)在开区间(a,b)内可导,且对(a,b)内任意两点x1、x2,恒有|f(x2)-f(x1)|≤(x2-x1)^2,则必有
A f'(x)≠0 B f'(x)=x C f(x)=x D f(x)=C(常数)
1、设f(x)在闭区间[-1,1]上连续,在开区间(-1,1)内可导,且|f'(x)|≤M,f(0)=0,则必有
A |f(x)|≥M B |f(x)|>M C f(x)|≤M D f(x)|<M
2、若f(x)在开区间(a,b)内可导,且对(a,b)内任意两点x1、x2,恒有|f(x2)-f(x1)|≤(x2-x1)^2,则必有
A f'(x)≠0 B f'(x)=x C f(x)=x D f(x)=C(常数)
本题链接: