求解一道高中三角函数的证明题已知:acos^2(A)+bsin^2(A)=mcos^2(B)asin^2(A)+bcos^2(A)=nsin^2(B)mtan^2(A)=ntan^2(B)其中b≠0,B≠nπ求证:(a+b*(m+n) =2mn
2022-08-15 04:47:17 16次 反馈错误 加入收藏 正确率 : 100%
题目内容:
求解一道高中三角函数的证明题
已知:acos^2(A)+bsin^2(A)=mcos^2(B)
asin^2(A)+bcos^2(A)=nsin^2(B)
mtan^2(A)=ntan^2(B)
其中b≠0,B≠nπ
求证:(a+b*(m+n) =2mn
本题链接: