首页 > 中学数学试题 > 题目详情
如图1,对于平面内的点P和两条曲线、给出如下定义:若从点P任意引出一条射线分别与、交于、,总有是定值,我们称曲线与“曲似”,定值为“曲似比”,点P为“曲心”. 例如:如图2,以点为圆心,半径分别为、都...
题目内容:
如图1,对于平面内的点P和两条曲线、给出如下定义:若从点P任意引出一条射线分别与、交于、,总有是定值,我们称曲线与“曲似”,定值为“曲似比”,点P为“曲心”.
例如:如图2,以点为圆心,半径分别为、都是常数的两个同心圆、,从点任意引出一条射线分别与两圆交于点M、N,因为总有是定值,所以同心圆与曲似,曲似比为,“曲心”为.
在平面直角坐标系xOy中,直线与抛物线、分别交于点A、B,如图3所示,试判断两抛物线是否曲似,并说明理由;
在的条件下,以O为圆心,OA为半径作圆,过点B作x轴的垂线,垂足为C,是否存在k值,使与直线BC相切?若存在,求出k的值;若不存在,说明理由;
在、的条件下,若将“”改为“”,其他条件不变,当存在与直线BC相切时,直接写出m的取值范围及k与m之间的关系式.
本题链接: