首页 > 中学数学试题 > 题目详情
离散数学 作业 高分求!一、集合运算自我练习(每题15分,共30分) 3.设A={{a, b}, 1, 2},B={ a
题目内容:
离散数学 作业 高分求!
一、集合运算自我练习(每题15分,共30分)
3.设A={{a, b}, 1, 2},B={ a, b, {1}, 1},求(AB),A×B和(A∪B)(A∩B).
4.设A, B, C是三个任意集合,试证A (B C)=(A B) (A C).
二、关系性质与等价关系的判定(每题25分,共50分)
5.设集合A={a , b , c}上的二元关系
R = {a , a,b , b,b , c,c , c},
S ={a , b,b , a},
T = {a , b,a , c,b , a,b , c},
判断R,S,T是否为A上自反的、对称的和传递的关系.并说明理由.
6.设集合A = {a, b, c, d},R,S是A上的二元关系,且
R = {, , , , , , , }
S = {, , , , , , , , }
试判断R和S是否为A上的等价关系,并说明理由.
离散数学 作业 高分求!
一、集合运算自我练习(每题15分,共30分)
3.设A={{a, b}, 1, 2},B={ a, b, {1}, 1},求(AB),A×B和(A∪B)(A∩B).
4.设A, B, C是三个任意集合,试证A (B C)=(A B) (A C).
二、关系性质与等价关系的判定(每题25分,共50分)
5.设集合A={a , b , c}上的二元关系
R = {a , a,b , b,b , c,c , c},
S ={a , b,b , a},
T = {a , b,a , c,b , a,b , c},
判断R,S,T是否为A上自反的、对称的和传递的关系.并说明理由.
6.设集合A = {a, b, c, d},R,S是A上的二元关系,且
R = {, , , , , , , }
S = {, , , , , , , , }
试判断R和S是否为A上的等价关系,并说明理由.
一、集合运算自我练习(每题15分,共30分)
3.设A={{a, b}, 1, 2},B={ a, b, {1}, 1},求(AB),A×B和(A∪B)(A∩B).
4.设A, B, C是三个任意集合,试证A (B C)=(A B) (A C).
二、关系性质与等价关系的判定(每题25分,共50分)
5.设集合A={a , b , c}上的二元关系
R = {a , a,b , b,b , c,c , c},
S ={a , b,b , a},
T = {a , b,a , c,b , a,b , c},
判断R,S,T是否为A上自反的、对称的和传递的关系.并说明理由.
6.设集合A = {a, b, c, d},R,S是A上的二元关系,且
R = {, , , , , , , }
S = {, , , , , , , , }
试判断R和S是否为A上的等价关系,并说明理由.
本题链接: