首页 > 政治 > 题目详情
如何证明Sinx+Cosx=根号2*Cos(x-π/2)等号右边根号2乘以Cos[x-(π/2)],不能证明请写出详细步骤
题目内容:
如何证明Sinx+Cosx=根号2*Cos(x-π/2)
等号右边 根号2乘以Cos[x-(π/2)],不能证明请写出详细步骤优质解答
Sin(x)+Cos(x)
=√2[(1/√2)Sin(x)+(1/√2)Cos(x)]
=√2[Sin(π/4)Sin(x)+Cos(π/4)Cos(x)]
=√2Cos(x-π/4)
其中用到公式
Cos(x+y)=Cos(x)Cos(y)-Sin(x)Sin(y)
把y=-π/4,带入即得
Cos(x-π/4)=Cos(x)Cos(π/4)+Sin(x)Sin(π/4)
而Cos(π/4)=Sin(π/4)=1/√2
等号右边 根号2乘以Cos[x-(π/2)],不能证明请写出详细步骤
优质解答
=√2[(1/√2)Sin(x)+(1/√2)Cos(x)]
=√2[Sin(π/4)Sin(x)+Cos(π/4)Cos(x)]
=√2Cos(x-π/4)
其中用到公式
Cos(x+y)=Cos(x)Cos(y)-Sin(x)Sin(y)
把y=-π/4,带入即得
Cos(x-π/4)=Cos(x)Cos(π/4)+Sin(x)Sin(π/4)
而Cos(π/4)=Sin(π/4)=1/√2
本题链接: