公元263年左右,我国数学家刘徽发现当圆内接正多边形的边数无限增加时,多边形面积可无限逼近圆的面积,并创立了“割圆术”.利用“割圆术”刘徽得到了圆周率精确到小数点后两位的近似值 ,这就是著名的“微率”...
2023-02-27 17:53:12 207次 2017届陕西省渭南市高三下学期第二次教学质量检测(二模)数学(文)试卷 选择题 反馈错误 加入收藏 正确率 : 100%
题目内容:
公元263年左右,我国数学家刘徽发现当圆内接正多边形的边数无限增加时,多边形面积可无限逼近圆的面积,并创立了“割圆术”.利用“割圆术”刘徽得到了圆周率精确到小数点后两位的近似值 ,这就是著名的“微率”,如图是利用刘徽的“割圆术”思想设计的一个程序框图,则输出的值为 ( )
(参考数据: )
A. B. C. D.
本题链接: