首页 > 中学考试杂题 > 题目详情
已知函数f(x)=ax3+|x-a|,aR. (1)若a=-1,求函数y=f(x) (x [0,+∞))的图象在x=1处的切线方程; (2)若g(x)=x4,试讨论方程f(x)=g(x)的实数解的个数...
题目内容:
已知函数f(x)=ax3+|x-a|,aR.
(1)若a=-1,求函数y=f(x) (x [0,+∞))的图象在x=1处的切线方程;
(2)若g(x)=x4,试讨论方程f(x)=g(x)的实数解的个数;
(3)当a>0时,若对于任意的x1 [a,a+2],都存在x2 [a+2,+∞),使得f(x1)f(x2)=1024,求满足条件的正整数a的取值的集合.
本题链接: