首页 > 中学考试杂题 > 题目详情
设集合M是满足下列条件的函数f(x)的集合:①f(x)的定义域为R;②存在a<b,使f(x)在(-∞,a),(b,+∞)上分别单调递增,在(a,b)上单调递减. (I)设f1(x)=x•|x-2|,f...
题目内容:
设集合M是满足下列条件的函数f(x)的集合:①f(x)的定义域为R;②存在a<b,使f(x)在(-∞,a),(b,+∞)上分别单调递增,在(a,b)上单调递减.
(I)设f1(x)=x•|x-2|,f2(x)=x3-3x2+3x,判断f1(x),f2(x)是否在集合M中,并说明理由;
(II)求证:对任意的实数t,f(x)=都在集合M中;
(Ⅲ)是否存在可导函数f(x),使得f(x)与g(x)=f'(x)-x都在集合M中,并且有相同的单调区间?请说明理由.
本题链接: