首页 > 中学考试杂题 > 题目详情
定义在D上的函数f(x),如果满足:对任意x∈D,存在常数M>0,使得|f(x)|≤M成立,则称f(x) 是D上的有界函数,其中M称为函数f(x)的上界.已知函数f(x)=4-x+p•2-x+1,g(...
题目内容:
定义在D上的函数f(x),如果满足:对任意x∈D,存在常数M>0,使得|f(x)|≤M成立,则称f(x) 是D上的有界函数,其中M称为函数f(x)的上界.已知函数f(x)=4-x+p•2-x+1,g(x)=.
(Ⅰ)当p=1时,求函数f(x)在(-∞,0)上的值域,并判断函数f(x)在(-∞,0)上是否为有界函数,请说明理由;
(Ⅱ)若,函数g(x)在[0,1]上的上界是H(q),求H(q)的取值范围;
(Ⅲ)若函数f(x)在[0,+∞)上是以3为上界的有界函数,求实数p的取值范围.
本题链接: