首页 > 中学考试杂题 > 题目详情
在解决问题:“证明数集A={x|2<x≤3}没有最小数”时,可用反证法证明.假设a(2<a≤3)是A中的最小数,则取,可得:,与假设中“a是A中的最小数”矛盾!那么对于问题:“证明数集没有最大数”,也...
题目内容:
在解决问题:“证明数集A={x|2<x≤3}没有最小数”时,可用反证法证明.假设a(2<a≤3)是A中的最小数,则取,可得:,与假设中“a是A中的最小数”矛盾!那么对于问题:“证明数集没有最大数”,也可以用反证法证明.我们可以假设是B中的最大数,则可以找到x'= (用m,n表示),由此可知x'∈B,x'>x,这与假设矛盾!所以数集B没有最大数.
本题链接: