首页 > 中学考试杂题 > 题目详情
已知直线l:y=x+,圆O:x2+y2=4,椭圆E:+=1(a>b>0)的离心率e=,直线l被圆O截得的弦长与椭圆的短轴长相等. (1)求椭圆E的方程; (2)已知动直线(斜率存在)与椭圆E交于P,Q...
题目内容:
已知直线l:y=x+,圆O:x2+y2=4,椭圆E:+=1(a>b>0)的离心率e=,直线l被圆O截得的弦长与椭圆的短轴长相等.
(1)求椭圆E的方程;
(2)已知动直线(斜率存在)与椭圆E交于P,Q两个不同点,且△OPQ的面积S△OPQ=1,若N为线段PQ的中点,问:在x轴上是否存在两个定点A,B,使得直线NA与NB的斜率之积为定值?若存在,求出A,B的坐标,若不存在,说明理由.
本题链接: