设x=-1是f(x)=(x2+ax+b)e2-x(x∈R)的一个极值点, (1)求a与b的关系式(用a表示b)并求f(x)的单调区间 (2)是否存在实数m,使得对任意a∈(-2,-1)及λ1λ2∈[-...
2023-04-13 11:11:08 71次 2010-2011学年山东省青岛市即墨一中高二(下)段考数学试卷(理科)(解析版) 解答题 反馈错误 加入收藏 正确率 : 100%
题目内容:
设x=-1是f(x)=(x2+ax+b)e2-x(x∈R)的一个极值点,
(1)求a与b的关系式(用a表示b)并求f(x)的单调区间
(2)是否存在实数m,使得对任意a∈(-2,-1)及λ1λ2∈[-2,1]总有|f(λ1)-f(λ2)|<[(m+2)a+1]e3恒成立,若存在求出m的范围.若不存在,说明理由.
本题链接: