首页 > 中学考试杂题 > 题目详情
(本题满分18分) 本题共有3个小题,第1小题满分5分,第2小题满分8分,第3小题满分5分. 定义:由椭圆的两个焦点和短轴的一个顶点组成的三角形称为该椭圆的“特征三角形”.如果两个椭圆的“特征三角形”...
题目内容:
(本题满分18分) 本题共有3个小题,第1小题满分5分,第2小题满分8分,第3小题满分5分.
定义:由椭圆的两个焦点和短轴的一个顶点组成的三角形称为该椭圆的“特征三角形”.如果两个椭圆的“特征三角形”是相似的,则称这两个椭圆是“相似椭圆”,并将三角形的相似比称为椭圆的相似比.已知椭圆.
(1)若椭圆,判断与是否相似?如果相似,求出与的相似比;如果不相似,请说明理由;
(2)写出与椭圆相似且焦点在轴上、短半轴长为的椭圆的标准方程;若在椭圆上存在两点、关于直线对称,求实数的取值范围;
(3)如图:直线与两个“相似椭圆”和分别交于点和点,试在椭圆和椭圆上分别作出点和点(非椭圆顶点),使和组成以为相似比的两个相似三角形,写出具体作法.(不必证明)
本题链接: