已知函数g(x)=kx+b(k≠0),当x∈[-1,1]时,g(x)的最大值比最小值大2,又f(x)=2x+3.是否存在常数k,b使得f[g(x)]=g[f(x)]对任意的x恒成立,如果存在,求出k,...
2023-03-29 02:17:53 160次 2011-2012学年河南省开封市开封县高一(上)第一次月考数学试卷(解析版) 解答题 反馈错误 加入收藏 正确率 : 100%
题目内容:
已知函数g(x)=kx+b(k≠0),当x∈[-1,1]时,g(x)的最大值比最小值大2,又f(x)=2x+3.是否存在常数k,b使得f[g(x)]=g[f(x)]对任意的x恒成立,如果存在,求出k,b.如果不存在,说明为什么?
本题链接: