已知a∈R,函数f(x)=x|x-a|, (Ⅰ)当a=2时,写出函数y=f(x)的单调递增区间; (Ⅱ)当a>2时,求函数y=f(x)在区间[1,2]上的最小值; (Ⅲ)设a≠0,函数f(x)在(m,...
2023-03-28 02:53:51 36次 2011-2012学年江苏省常州五中高一(上)期中数学试卷(解析版) 解答题 反馈错误 加入收藏 正确率 : 100%
题目内容:
已知a∈R,函数f(x)=x|x-a|,
(Ⅰ)当a=2时,写出函数y=f(x)的单调递增区间;
(Ⅱ)当a>2时,求函数y=f(x)在区间[1,2]上的最小值;
(Ⅲ)设a≠0,函数f(x)在(m,n)上既有最大值又有最小值,请分别求出m、n的取值范围(用a表示).
本题链接: