首页 > 中学考试杂题 > 题目详情
已知函数f (x)=(x-1)2,数列{an}是公差为d的等差数列,数列{bn}是公比为q的等比数列(q∈R,q≠1,q≠0).若a1=f(d-1),a3=f (d+1),b1=f (q-1),b3=...
题目内容:
已知函数f (x)=(x-1)2,数列{an}是公差为d的等差数列,数列{bn}是公比为q的等比数列(q∈R,q≠1,q≠0).若a1=f(d-1),a3=f (d+1),b1=f (q-1),b3=f (q+1),
(1)求数列{an},{bn}的通项公式;
(2)若数列{an}的前n项和为Sn,
①求证:对任意的n≥2,(n∈N*)时
②设数列{cn}对任意的自然数n均有成立,求c1+c2+c3+…+cn的值.
本题链接: