首页 > 中学考试杂题 > 题目详情
已知数集A={a1,a2,…,an}(1=a1<a2<…<an,n≥2)具有性质P:对任意的k(2≤k≤n),∃i,j(1≤i≤j≤n),使得ak=ai+aj成立. (Ⅰ)分别判断数集{1,3,4}与...
题目内容:
已知数集A={a1,a2,…,an}(1=a1<a2<…<an,n≥2)具有性质P:对任意的k(2≤k≤n),∃i,j(1≤i≤j≤n),使得ak=ai+aj成立.
(Ⅰ)分别判断数集{1,3,4}与{1,2,3,6}是否具有性质P,并说明理由;
(Ⅱ)求证:an≤2a1+a2+…+an-1(n≥2);
(Ⅲ)若an=72,求数集A中所有元素的和的最小值.
本题链接: