首页 > 中学考试杂题 > 题目详情
已知函数f(x)在定义域(-无穷大,4]上为减函数,且能使f(m-sinx)≤f(根号下(1+2m)-7/4+ + Co
题目内容:
已知函数f(x)在定义域(-无穷大,4]上为减函数,且能使f(m-sinx)≤f(根号下(1+2m)-7/4+ + Cos^2 X)
求m得范围.
以前的答案不对吧
好像:
√(1+2m)-7/4+cos²x≤m-sinx.......(1)
√(1+2m)-7/4+cos²x≤4.........(2)
m-sinx≤4..........(3)
(1)===>√(1+2m)-m ≤sin²x-sinx+3/4=(sinx -1/2)²+1/2
对于任意的x∈R成立
===>√(1+2m)-m ≤1/2
m²+1/4+m≥1+2m
(m-1/2)²-1≥0
m≥3/2
或 m ≤-1/2
(2)==>√(1+2m)≤23/4-cos²x
对于任意的x∈R成立 ==>√(1+2m)≤19/4
-1/2≤m≤345/32
3)===>m≤4+sinx 对于任意的x∈R成立====>m≤3
上述交集
==>m∈[3/2 ,3] or m=-1/2
已知函数f(x)在定义域(-无穷大,4]上为减函数,且能使f(m-sinx)≤f(根号下(1+2m)-7/4+ + Cos^2 X)
求m得范围.
以前的答案不对吧
好像:
√(1+2m)-7/4+cos²x≤m-sinx.......(1)
√(1+2m)-7/4+cos²x≤4.........(2)
m-sinx≤4..........(3)
(1)===>√(1+2m)-m ≤sin²x-sinx+3/4=(sinx -1/2)²+1/2
对于任意的x∈R成立
===>√(1+2m)-m ≤1/2
m²+1/4+m≥1+2m
(m-1/2)²-1≥0
m≥3/2
或 m ≤-1/2
(2)==>√(1+2m)≤23/4-cos²x
对于任意的x∈R成立 ==>√(1+2m)≤19/4
-1/2≤m≤345/32
3)===>m≤4+sinx 对于任意的x∈R成立====>m≤3
上述交集
==>m∈[3/2 ,3] or m=-1/2
求m得范围.
以前的答案不对吧
好像:
√(1+2m)-7/4+cos²x≤m-sinx.......(1)
√(1+2m)-7/4+cos²x≤4.........(2)
m-sinx≤4..........(3)
(1)===>√(1+2m)-m ≤sin²x-sinx+3/4=(sinx -1/2)²+1/2
对于任意的x∈R成立
===>√(1+2m)-m ≤1/2
m²+1/4+m≥1+2m
(m-1/2)²-1≥0
m≥3/2
或 m ≤-1/2
(2)==>√(1+2m)≤23/4-cos²x
对于任意的x∈R成立 ==>√(1+2m)≤19/4
-1/2≤m≤345/32
3)===>m≤4+sinx 对于任意的x∈R成立====>m≤3
上述交集
==>m∈[3/2 ,3] or m=-1/2
本题链接: