设X0是f(x)=(e^x-e^-x)/2的最小值,则曲线在点(X0,f(X0))处的切线方程为f(x)=(e^x-e^-x)/2的导函数是f’(x)=(e^x-e^(-x))/2中间是减号 同学
2022-06-14 03:53:35 27次 反馈错误 加入收藏 正确率 : 100%
题目内容:
设X0是f(x)=(e^x-e^-x)/2的最小值,则曲线在点(X0,f(X0))处的切线方程为
f(x)=(e^x-e^-x)/2的导函数是f’(x)=(e^x-e^(-x))/2中间是减号 同学
本题链接: