首页 > 中学考试杂题 > 题目详情
证明:f(x)=x*cos(x)不是周期函数证明:假设y=xcosx是周期函数,因为周期函数有f(x+T)=f(x)xc
题目内容:
证明:f(x)=x*cos(x)不是周期函数
证明:假设y=xcosx是周期函数,
因为周期函数有f(x+T)=f(x)
xcosx=(x+T)cos(x+T)=xcosx*cosT-xsinx*sinT+Tcosx*cosT-Tsinx*sinT
所以cosT=1 T=kπ/2
-xsinx*sinT+Tcosx*cosT-Tsinx*sinT=0
-xsinx*sinT-Tsinx*sinT=0
(x+T)sinx*sinT=0
只能是sinT=0 T=kπ和T=kπ/2矛盾
所以不是周期函数
这里的“所以cosT=1 T=kπ/2” 看不懂,是怎么的出来的,
证明:f(x)=x*cos(x)不是周期函数
证明:假设y=xcosx是周期函数,
因为周期函数有f(x+T)=f(x)
xcosx=(x+T)cos(x+T)=xcosx*cosT-xsinx*sinT+Tcosx*cosT-Tsinx*sinT
所以cosT=1 T=kπ/2
-xsinx*sinT+Tcosx*cosT-Tsinx*sinT=0
-xsinx*sinT-Tsinx*sinT=0
(x+T)sinx*sinT=0
只能是sinT=0 T=kπ和T=kπ/2矛盾
所以不是周期函数
这里的“所以cosT=1 T=kπ/2” 看不懂,是怎么的出来的,
证明:假设y=xcosx是周期函数,
因为周期函数有f(x+T)=f(x)
xcosx=(x+T)cos(x+T)=xcosx*cosT-xsinx*sinT+Tcosx*cosT-Tsinx*sinT
所以cosT=1 T=kπ/2
-xsinx*sinT+Tcosx*cosT-Tsinx*sinT=0
-xsinx*sinT-Tsinx*sinT=0
(x+T)sinx*sinT=0
只能是sinT=0 T=kπ和T=kπ/2矛盾
所以不是周期函数
这里的“所以cosT=1 T=kπ/2” 看不懂,是怎么的出来的,
本题链接: