首页 > 中学考试杂题 > 题目详情
已知函数f(x)定义域为[-1,1],若对于任意的x,y∈[-1,1],都有f(x+y)=f(x)+f(y),且x>0时,有f(x)>0. (1)证明:f(x)为奇函数; (2)证明:f(x)在[-1...
题目内容:
已知函数f(x)定义域为[-1,1],若对于任意的x,y∈[-1,1],都有f(x+y)=f(x)+f(y),且x>0时,有f(x)>0.
(1)证明:f(x)为奇函数;
(2)证明:f(x)在[-1,1]上为单调递增函数;
(3)设f(1)=1,若f(x)<m2-2am+1,对所有x∈[-1,1],a∈[-1,1]恒成立,求实数m的取值范围.
本题链接: