首页 > 中学考试杂题 > 题目详情
已知椭圆的左、右两个焦点分别为,离心率,短轴长为2. (Ⅰ)求椭圆的方程; (Ⅱ)设点为椭圆上的一动点(非长轴端点),的延长线与椭圆交于点,的延长线与椭圆交于点,若面积为,求直线的方程. 【答案】(Ⅰ...
题目内容:
已知椭圆的左、右两个焦点分别为,离心率,短轴长为2.
(Ⅰ)求椭圆的方程;
(Ⅱ)设点为椭圆上的一动点(非长轴端点),的延长线与椭圆交于点,的延长线与椭圆交于点,若面积为,求直线的方程.
【答案】(Ⅰ)(Ⅱ)或
【解析】试题分析:(Ⅰ)由题意得,再由 椭圆的方程为;(Ⅱ)①当直线斜率不存在时,不妨取面积为 ,不符合题意. ②当直线斜率存在时,设直线, 由 得 ,再求点的直线的距离 点到直线的距离为面积为 ∴或 所求方程为或.
试题解析:
(Ⅰ)由题意得,∴,
∵,∴,
∴椭圆的方程为.
(Ⅱ)①当直线斜率不存在时,不妨取,
∴面积为 ,不符合题意.
②当直线斜率存在时,设直线,
由化简得,
设,
∴ ,
∵点的直线的距离,
又是线段的中点,∴点到直线的距离为,
∴面积为 ,
∴,∴,∴,∴或,
∴直线的方程为或.
【题型】解答题
【结束】
25
已知函数.
(Ⅰ)求函数的单调区间与极值;
(Ⅱ)若,且,证明: .
本题链接: