首页 > 中学考试杂题 > 题目详情
已知函数在和处取得极值. (1)求f(x)的表达式和极值. (2)若f(x)在区间[m,m+4]上是单调函数,试求m的取值范围. 【答案】(1)f(x)=2x3-3x2-12x+3,当x=-1时,有极...
题目内容:
已知函数在和处取得极值.
(1)求f(x)的表达式和极值.
(2)若f(x)在区间[m,m+4]上是单调函数,试求m的取值范围.
【答案】(1)f(x)=2x3-3x2-12x+3,当x=-1时,有极大值10;当x=2时,有极小值-17(2)m≤-5或m≥2
【解析】试题分析:(1)由题意得和2为导函数两个零点,根据韦达定理可求,列表分析导函数符号变化规律,确定极值,(2)由(1)可得函数单调区间,根据为单调区间一个子集可得不等式或或,解不等式可得的取值范围.
试题解析:(1)的两根为和2,∴,得,
∴,∴,令,得或;令,得,所以的极大值是,极小值是.
(2)由(1)知, 在和上单调递增,在上单调递减,
∴或或,∴或,则的取值范围是.
点睛:函数极值问题的常见类型及解题策略
(1)知图判断函数极值的情况.先找导数为0的点,再判断导数为0的点的左、右两侧的导数符号.
(2)已知函数求极值.求→求方程的根→列表检验在的根的附近两侧的符号→下结论.
(3)已知极值求参数.若函数在点处取得极值,则,且在该点左、右两侧的导数值符号相反.
【题型】解答题
【结束】
22
如图,设椭圆的中心为原点,长轴在轴上,上顶点为,左,右焦点分别为,线段的中点分别为,且 是面积为4的直角三角形.
(1)求该椭圆的离心率和标准方程;
(2)过做直线交椭圆于两点,使,求直线的方程.
本题链接: