首页 > 中学考试杂题 > 题目详情
为促进农业发展,加快农村建设,某地政府扶持兴建了一批“超级蔬菜大棚”.为了解大棚的面积与年利润之间的关系,随机抽取了其中的7个大棚,并对当年的利润进行统计整理后得到了如下数据对比表: 大棚面积(亩) ...
题目内容:
为促进农业发展,加快农村建设,某地政府扶持兴建了一批“超级蔬菜大棚”.为了解大棚的面积与年利润之间的关系,随机抽取了其中的7个大棚,并对当年的利润进行统计整理后得到了如下数据对比表:
大棚面积(亩) | 4.5 | 5.0 | 5.5 | 6.0 | 6.5 | 7.0 | 7.5 |
年利润(万元) | 6 | 7 | 7.4 | 8.1 | 8.9 | 9.6 | 11.1 |
由所给数据的散点图可以看出,各样本点都分布在一条直线附近,并且与有很强的线性相关关系.
(Ⅰ)求关于的线性回归方程;
(Ⅱ)小明家的“超级蔬菜大棚”面积为8.0亩,估计小明家的大棚当年的利润为多少;
(Ⅲ)另外调查了近5年的不同蔬菜亩平均利润(单位:万元),其中无丝豆为:1.5,1.7,2.1,2.2,2.5;彩椒为:1.8,1.9,1.9,2.2,2.2,请分析种植哪种蔬菜比较好?
参考数据: , .
参考公式: , .
【答案】(Ⅰ).(Ⅱ)大约为11.442万元.(Ⅲ)种植彩椒比较好.
【解析】【试题分析】(I)利用回归直线方程计算公式计算出回归直线方程.(II)将代入求得当年利润的估计值.(III)通过计算平均数和方差比较种植哪种蔬菜好.
【试题解析】
(Ⅰ), , ,
,
,
那么回归方程为: .
(Ⅱ)将代入方程得
,即小明家的“超级大棚”当年的利润大约为11.442万元.
(Ⅲ)近5年来,无丝豆亩平均利润的平均数为,
方差 .
彩椒亩平均利润的平均数为,
方差为 .
因为, ,∴种植彩椒比较好.
【题型】解答题
【结束】
19
如图,四棱锥中, 为等边三角形,且平面平面, , , .
(Ⅰ)证明: ;
(Ⅱ)若棱锥的体积为,求该四棱锥的侧面积.
本题链接: