如图,在四棱锥P-ABCD中,AD∥BC,ADC=PAB=90°,BC=CD=AD.E为棱AD的中点,异面直线PA与CD所成的角为90°. (I)在平面PAB内找一点M,使得直线CM∥平面PBE,并说...
2023-01-20 10:57:39 188次 苏教版高中数学 高三二轮 专题23 立体几何中的向量方法及抛物线 测试 解答题 反馈错误 加入收藏 正确率 : 100%
题目内容:
如图,在四棱锥P-ABCD中,AD∥BC,ADC=PAB=90°,BC=CD=AD.E为棱AD的中点,异面直线PA与CD所成的角为90°.
(I)在平面PAB内找一点M,使得直线CM∥平面PBE,并说明理由;
(II)若二面角P-CD-A的大小为45°,求直线PA与平面PCE所成角的正弦值.
本题链接: