首页 > 中学考试杂题 > 题目详情
三角形面积为S=(a+b+c)r,a,b,c为三角形三边长,r为三角形内切圆半径,利用类比推理,可以得出四面体的体积为 ( ) A. V=abc B. V=Sh C. V=(ab+bc+ac)·h(h...
题目内容:
三角形面积为S=(a+b+c)r,a,b,c为三角形三边长,r为三角形内切圆半径,利用类比推理,可以得出四面体的体积为 ( )
A. V=abc B. V=Sh
C. V=(ab+bc+ac)·h(h为四面体的高) D. V=(S1+S2+S3+S4)·r(其中S1,S2,S3,S4分别为四面体四个面的面积,r为四面体内切球的半径,设四面体的内切球的球心为O,则球心O到四个面的距离都是r)
本题链接: