首页 > 中学考试杂题 > 题目详情
设不等式mx2-2x-m+1<0对于满足|m|≤2的一切m的值都成立,求x的取值范围. 【答案】 【解析】 令f(m)=m(x2﹣1)﹣2x+1,由条件f(m)<0对满足|m|≤2的一切m的值都成立,...
题目内容:
设不等式mx2-2x-m+1<0对于满足|m|≤2的一切m的值都成立,求x的取值范围.
【答案】
【解析】
令f(m)=m(x2﹣1)﹣2x+1,由条件f(m)<0对满足|m|≤2的一切m的值都成立,利用一次函数的单调性可得:f(﹣2)<0,f(2)<0.解出即可.
令f(m)=m(x2﹣1)﹣2x+1,由条件f(m)<0对满足|m|≤2的一切m的值都成立,
则需要f(﹣2)<0,f(2)<0.
解不等式组,解得,
∴x的取值范围是.
【点睛】
本题考查了一次函数的单调性、一元二次不等式的解法,考查了转化方法,考查了推理能力与计算能力,属于中档题.
【题型】解答题
【结束】
21
某厂有一批长为18m的条形钢板,可以割成1.8m和1.5m长的零件.它们的加工费分别为每个1元和0.6元.售价分别为20元和15元,总加工费要求不超过8元.问如何下料能获得最大利润.
本题链接: