首页 > 中学考试杂题 > 题目详情
设等比数列{}的公比为 q(q > 0,q ̸= 1),前 n 项和为 Sn,且 2a1a3 = a4,数列{}的前 n 项和 Tn 满足2Tn = n(bn - 1),n ∈N*,b2 = 1. (...
题目内容:
设等比数列{}的公比为 q(q > 0,q ̸= 1),前 n 项和为 Sn,且 2a1a3 = a4,数列{}的前 n 项和 Tn 满足2Tn = n(bn - 1),n ∈N*,b2 = 1.
(1) 求数列 {},{}的通项公式;
(2) 是否存在常数 t,使得 {Sn+ } 为等比数列?说明理由;
(3) 设 cn =,对于任意给定的正整数 k(k ≥2), 是否存在正整数 l,m(k < l < m), 使得 ck,c1,cm 成等差数列?若存在,求出 l,m(用 k 表示),若不存在,说明理由.
本题链接: