首页 > 中学考试杂题 > 题目详情
为了适应高考改革,某中学推行“创新课堂”教学.高一平行甲班采用“传统教学”的教学方式授课,高一平行乙班采用“创新课堂”的教学方式授课,为了比较教学效果,期中考试后,分别从两个班中各随机抽取20名学生的...
题目内容:
为了适应高考改革,某中学推行“创新课堂”教学.高一平行甲班采用“传统教学”的教学方式授课,高一平行乙班采用“创新课堂”的教学方式授课,为了比较教学效果,期中考试后,分别从两个班中各随机抽取20名学生的成绩进行统计分析,结果如表:(记成绩不低于120分者为“成绩优秀”)
分数 | [80,90) | [90,100) | [100,110) | [110,120) | [120,130) | [130,140) | [140,150] |
甲班频数 | 1 | 1 | 4 | 5 | 4 | 3 | 2 |
乙班频数 | 0 | 1 | 1 | 2 | 6 | 6 | 4 |
(Ⅰ)由以上统计数据填写下面的2×2列联表,并判断是否有95%以上的把握认为“成绩优秀与教学方式有关”?
| 甲班 | 乙班 | 总计 |
成绩优秀 |
|
|
|
成绩不优秀 |
|
|
|
总计 |
|
|
|
(Ⅱ)现从上述样本“成绩不优秀”的学生中,抽取3人进行考核,记“成绩不优秀”的乙班人数为X,求X的分布列和期望.
参考公式:,其中.
临界值表
P() | 0.100 | 0.050 | 0.010 | 0.001 |
2.706 | 3.841 | 6.635 | 10.828 |
本题链接: