首页 > 数学 > 题目详情
将一个圆形纸片用直线划分成大小不限的若干小纸片,如果要分成不少于50个小纸片,至少要画多少条直线?请说明.
题目内容:
将一个圆形纸片用直线划分成大小不限的若干小纸片,如果要分成不少于50个小纸片,至少要画多少条直线?请说明.优质解答
一条一条地画直线.下图是画3条直线的各种情形
由此可见,若希望将纸片划分成尽可能多的块教,应该使新画出的直线与原有的直线都在圆内相交,且交点互不相同.这时增加的块数等于直线的条数.这样划分出的块数,列表如下:
直线条数纸片最多划分成的块数
1 1+1
2 1+1+2
3 1+1+2+3
5 1+1+2+3+4
5 1+1+2+3+4+5
不难看出,表中每行右边的数等于1加上从1到行数的所有整数的和.
因为1+1+2+3+…+10=56,1+1+2+3+…+9=46,
可见第9行右边还不到50,而第10行右边已经超过50了.
答:至少要画10条直线.
优质解答
由此可见,若希望将纸片划分成尽可能多的块教,应该使新画出的直线与原有的直线都在圆内相交,且交点互不相同.这时增加的块数等于直线的条数.这样划分出的块数,列表如下:
直线条数纸片最多划分成的块数
1 1+1
2 1+1+2
3 1+1+2+3
5 1+1+2+3+4
5 1+1+2+3+4+5
不难看出,表中每行右边的数等于1加上从1到行数的所有整数的和.
因为1+1+2+3+…+10=56,1+1+2+3+…+9=46,
可见第9行右边还不到50,而第10行右边已经超过50了.
答:至少要画10条直线.
本题链接: