已知正整数x、y使得是4xy/(x+y)一个奇数,证明:存在一个正整数k,使得4k-1整除4xy/(x+y).
2020-10-24 168次 反馈错误 加入收藏 正确率 : 100%
题目内容:
已知正整数x、y使得是4xy/(x+y)一个奇数,证明:存在一个正整数k,使得4k-1整除4xy/(x+y).
优质解答
显然x.y同奇偶,可以得到若他们是偶数,那么它们的含有的素数2的次数是一样的,设x=2^s*p,y=2^s*q,s≥0,p,q为奇数,原式等于4*2^[2s]*pq/2^s[p+q]=4*2^s*pq/[p+q],为了是奇数,设p+q=4*2^s*r,p-q=2t,原式=2^[2s+2]r-t&sup...
本题链接: