首页 > 数学 > 题目详情
求极限的多种方法
题目内容:
求极限的多种方法优质解答
1、利用定义求极限:
例如:很多就不必写了!
2、利用柯西准则来求!
柯西准则:要使{xn}有极限的充要条件使任给ε>0,存在自然数N,使得当n>N时,对于
任意的自然数m有|xn-xm|0
(2)lim (1+1/n)^n=e
n->∞
7、利用单调有界必有极限来求!
8、利用函数连续得性质求极限
9、用洛必达法则求,这是用得最多得.
10、用泰勒公式来求,这用得也十很经常得.
如果你认可我的回答,请及时点击采纳为【满意回答】按钮
手机提问者在客户端右上角评价点“满意”即可.
你的采纳是我前进的动力! 如还有新的问题,请另外向我求助,答题不易,谢谢支持……
优质解答
例如:很多就不必写了!
2、利用柯西准则来求!
柯西准则:要使{xn}有极限的充要条件使任给ε>0,存在自然数N,使得当n>N时,对于
任意的自然数m有|xn-xm|0
(2)lim (1+1/n)^n=e
n->∞
7、利用单调有界必有极限来求!
8、利用函数连续得性质求极限
9、用洛必达法则求,这是用得最多得.
10、用泰勒公式来求,这用得也十很经常得.
如果你认可我的回答,请及时点击采纳为【满意回答】按钮
手机提问者在客户端右上角评价点“满意”即可.
你的采纳是我前进的动力! 如还有新的问题,请另外向我求助,答题不易,谢谢支持……
本题链接: