设abc=1,b/bc+b+1+a/ab+a+1+c/ac+c+1等于多少?
2022-01-16 35次 反馈错误 加入收藏 正确率 : 100%
题目内容:
设abc=1,b/bc+b+1+a/ab+a+1+c/ac+c+1等于多少?
优质解答
b/(bc+b+1)+a/(ab+a+1)+c/(ac+c+1)=abc/(abc*c+abc+ac)+ac/(abc+ac+c)+c/(ac+c+1)——第一个式子分子分母都乘以ac,第二个式子分子分母都乘以c=1/(ac+c+1)+ac/(ac+c+1)+c/(ac+c+1)——abc=1代入得到=(1+ac+c)/(ac+c+1...
本题链接: