首页 > 数学 > 题目详情
如图,将变长为4cm的正方形纸片ABCD沿EF折叠(点E,F分别在边AB,CD上),使点B(字数限制,请看问题补充)如图
题目内容:
如图,将变长为4cm的正方形纸片ABCD沿EF折叠(点E,F分别在边AB,CD上),使点B(字数限制,请看问题补充)
如图,将变长为4cm的正方形纸片ABCD沿EF折叠(点E,F分别在边AB,CD上),使点B落在AD边上的中点M处,点C落在点N处,MN与CD交于点P,MN与CD交于点P,连接EP
判断线段EP,AE,DP之间的数量关系,并说明理由.优质解答
②解法一:取EP的中点G,连接MG.
梯形AEPD中,∵M、G分别是AD、EP的中点,∴MG= .
由折叠,得∠EMP=∠B=90°,又G为EP的中点,∴MG= .
故EP=AE+DP.
解法二:设AE=xcm,则EM=(4-x)cm.
Rt△EAM中,由 ,可得 ,解得 ,即AE .
∵∠AME+∠AEM=90°,∠AME+∠PMD=90°,∴∠AEM=∠PMD.
又∵∠A=∠D=90°,∴△AEM∽△DMP.
∴ ,即DP= .
过点E作EQ⊥CD,垂足为点Q,得矩形AEQD,
∴EQ=AD=4,PQ= ,,
故EP=AE+DP.
如图,将变长为4cm的正方形纸片ABCD沿EF折叠(点E,F分别在边AB,CD上),使点B落在AD边上的中点M处,点C落在点N处,MN与CD交于点P,MN与CD交于点P,连接EP
判断线段EP,AE,DP之间的数量关系,并说明理由.
优质解答
梯形AEPD中,∵M、G分别是AD、EP的中点,∴MG= .
由折叠,得∠EMP=∠B=90°,又G为EP的中点,∴MG= .
故EP=AE+DP.
解法二:设AE=xcm,则EM=(4-x)cm.
Rt△EAM中,由 ,可得 ,解得 ,即AE .
∵∠AME+∠AEM=90°,∠AME+∠PMD=90°,∴∠AEM=∠PMD.
又∵∠A=∠D=90°,∴△AEM∽△DMP.
∴ ,即DP= .
过点E作EQ⊥CD,垂足为点Q,得矩形AEQD,
∴EQ=AD=4,PQ= ,,
故EP=AE+DP.
本题链接: