首页 > 数学 > 题目详情
【如图,在直角梯形ABCD中,∠ABC=90°,AD∥BC,AD=4,AB=5,BC=6,点P是AB上一个动点,当PC+PD的和最小时,PB的长为()A.1B.2C.2、5D.3】
题目内容:
如图,在直角梯形ABCD中,∠ABC=90°,AD∥BC,AD=4,AB=5,BC=6,点P是AB上一个动点,当PC+PD的和最小时,PB的长为( )
A. 1
B. 2
C. 2、5
D. 3优质解答
延长DA到D′,则D和D′关于AB对称,连接CD′,与AB相交于点P,
根据“两点之间线段最短”可得此时PC+PD的和最小.
由于AD′∥BC,则△APD′∽△BPC.
设PB=x,则AP=5-x.
所以AP BP
=AD′ BC
,
即5−x x
=4 6
,
解得x=3,
即PB=3.
故选D.
A. 1
B. 2
C. 2、5
D. 3
优质解答
根据“两点之间线段最短”可得此时PC+PD的和最小.
由于AD′∥BC,则△APD′∽△BPC.
设PB=x,则AP=5-x.
所以
AP |
BP |
AD′ |
BC |
即
5−x |
x |
4 |
6 |
解得x=3,
即PB=3.
故选D.
本题链接: