首页 > 数学 > 题目详情
【解方程1/(x-2)(x-3)-3/(x-1)(x-4)+1/(x-1)(x-2)=1/(x-4)要求用到规律:1/n(n+1)=1/n-1/(n+1)】
题目内容:
解方程1/(x-2)(x-3)-3/(x-1)(x-4)+1/(x-1)(x-2)=1/(x-4)
要求用到规律:1/n(n+1)=1/n-1/(n+1)优质解答
1/(x-2)(x-3)-3/(x-1)(x-4)+1/(x-1)(x-2)=1/(x-4)1/(x-3)-1/(x-2)-1/(x-4)+1/(x-1)+1/(x-2)-1/(x-1)=1/(x-4)1/(x-3)-1/(x-4)=1/(x-4)1/(x-3)=2/(x-4)2(x-3)=x-42x-6=x-4x=2检验是增根所以原分式方程无解...
要求用到规律:1/n(n+1)=1/n-1/(n+1)
优质解答
本题链接: