首页 > 数学 > 题目详情
已知集合A={y|y=-x^2+2x-1},B={y/y=x^2-3},则A∩B= 为什么不能把集合A和B中的两道方程建
题目内容:
已知集合A={y|y=-x^2+2x-1},B={y/y=x^2-3},则A∩B=___
为什么不能把集合A和B中的两道方程建立联合方程组——求出y1,y2——所以集合A∩B={y1,y2}?
而一定要理解为求两式的值域,再取值域的交集?优质解答
首先谢谢你啊! 刚才还漏了一个问题没问呢~ 那么,已知M={(x,y)|x+y=2},N={(x,y)|x-y=4},那么集合M∩N为____ 为什么这里又可以把x和y当成统一概念? 麻烦你了,我会再加分的!!谢谢!! - 追答:
- 这里的x和y也不是统一成了一个概念,如果统一了只是为了简便的告诉你解法而已,有的老师甚至可能以为这里的x和y真的是一个概念,这是不对的: 其实我们知道(a,b)表示的是在平面坐标系里的点,而M,N分别代表的是平面坐标系里的两个点集,它们的图形是两条直线,而我们要求的是这两个点集的焦点,也就是两条直线的交点。同上一题,如果改成N={(t,p)|t-p=4}做法是一样的,要重新建立一个坐标系,坐标系的未知数才是统一的那个变量,例如我建立一个a,b坐标系,那么联立的两个方程就变成: a+b=2; a-b=4; 这时得到的解为:M∩N={(3,-1)} 懂了么? 总结:在集合中的未知数是什么和集合本身的意义没有关系
为什么不能把集合A和B中的两道方程建立联合方程组——求出y1,y2——所以集合A∩B={y1,y2}?
而一定要理解为求两式的值域,再取值域的交集?
优质解答
- 追答:
- 这里的x和y也不是统一成了一个概念,如果统一了只是为了简便的告诉你解法而已,有的老师甚至可能以为这里的x和y真的是一个概念,这是不对的: 其实我们知道(a,b)表示的是在平面坐标系里的点,而M,N分别代表的是平面坐标系里的两个点集,它们的图形是两条直线,而我们要求的是这两个点集的焦点,也就是两条直线的交点。同上一题,如果改成N={(t,p)|t-p=4}做法是一样的,要重新建立一个坐标系,坐标系的未知数才是统一的那个变量,例如我建立一个a,b坐标系,那么联立的两个方程就变成: a+b=2; a-b=4; 这时得到的解为:M∩N={(3,-1)} 懂了么? 总结:在集合中的未知数是什么和集合本身的意义没有关系
本题链接: