首页 > 数学 > 题目详情
四边形OABC是等腰梯形,OA∥BC,在建立如图所示的平面直角坐标系中,A(4,0),B(3,2),点M从O点出发沿折线
题目内容:
四边形OABC是等腰梯形,OA∥BC,在建立如图所示的平面直角坐标系中,A(4,0),B(3,2),点M从O点出发沿折线段OA-AB以每秒2个单位长的速度向终点B运动;同时,点N从B点出发沿折线段BC-CO以每秒1个单位长的速度向终点O运动、设运动时间为t秒.
(1)当点M运动到A点时,N点距原点O的距离是多少?当点M运动到AB上(不含A点)时,连接MN,t为何值时能使四边形BCNM为梯形?
(2)0≤t<2时,过点N作NP⊥x轴于P点,连接AC交NP于Q,连接MQ
①求△AMQ的面积S与时间t的函数关系式(不必写出t的取值范围)
②当t取何值时,△AMQ的面积最大?最大值为多少?
③当△AMQ的面积达到最大时,其是否为等腰三角形?请说明理由.优质解答
(1)四边形OABC是等腰梯形,则C(1,2),点M运动到A点时,N运动到C点,ON=OC=5
;
若四边形BCNM为梯形,则NC=BM,t-2=5
-2(t-2),解得:t=6+5
3
.
(2)①由于点M以每秒2个单位长的速度向终点B运动,点N以每秒1个单位长的速度向终点O运动,
则点Q横坐标为3-t,纵坐标由PA CN
=PQ NQ
求得:纵坐标为2 3
(t+1),
s=1 2
×MA×PQ=1 2
×(4-2t)×2 3
(t+1)=-2 3
t2+2 3
t+4 3
.
②当t=1 2
时,最大值是3 2
.
③是,t=1 2
,PM=3-t-2t=3 2
,PA=4-(3-t)=3 2
,
则PM=PA,故△AMQ为等腰三角形.
(1)当点M运动到A点时,N点距原点O的距离是多少?当点M运动到AB上(不含A点)时,连接MN,t为何值时能使四边形BCNM为梯形?
(2)0≤t<2时,过点N作NP⊥x轴于P点,连接AC交NP于Q,连接MQ
①求△AMQ的面积S与时间t的函数关系式(不必写出t的取值范围)
②当t取何值时,△AMQ的面积最大?最大值为多少?
③当△AMQ的面积达到最大时,其是否为等腰三角形?请说明理由.
优质解答
5 |
若四边形BCNM为梯形,则NC=BM,t-2=
5 |
6+
| ||
3 |
(2)①由于点M以每秒2个单位长的速度向终点B运动,点N以每秒1个单位长的速度向终点O运动,
则点Q横坐标为3-t,纵坐标由
PA |
CN |
PQ |
NQ |
2 |
3 |
s=
1 |
2 |
1 |
2 |
2 |
3 |
2 |
3 |
2 |
3 |
4 |
3 |
②当t=
1 |
2 |
3 |
2 |
③是,t=
1 |
2 |
3 |
2 |
3 |
2 |
则PM=PA,故△AMQ为等腰三角形.
本题链接: