首页 > 数学 > 题目详情
在四棱锥P-ABCD中,底面ABCD为矩形,侧棱PA垂直底面ABCD,AB=根号3,BC=1,PA=2,E为PD的中点.
题目内容:
在四棱锥P-ABCD中,底面ABCD为矩形,侧棱PA垂直底面ABCD,AB=根号3,BC=1,PA=2,E为PD的中点.
1.求直线BE与平面ABCD所成角的正切值;
2.在侧面PAB内找一点N,使NE垂直平面PAC,并求出点N到AB和AP的距离.
(第一问只要答案,第二问要详解.)优质解答
1、取AD中点H,连结EH、BH,
则EH是△PAD的中位线,
EH=PA/2=1,且EH//PA,
∵PA⊥平面ABCD,
∴EH⊥平面ABCD,
则〈HBE就是BE和平面ABCD所成角,
AD=BC=1,
BH=√(AB^2+AH^2)=√13/2,
tan
1.求直线BE与平面ABCD所成角的正切值;
2.在侧面PAB内找一点N,使NE垂直平面PAC,并求出点N到AB和AP的距离.
(第一问只要答案,第二问要详解.)
优质解答
则EH是△PAD的中位线,
EH=PA/2=1,且EH//PA,
∵PA⊥平面ABCD,
∴EH⊥平面ABCD,
则〈HBE就是BE和平面ABCD所成角,
AD=BC=1,
BH=√(AB^2+AH^2)=√13/2,
tan
本题链接: