首页 > 数学 > 题目详情
如图,▱ABCD中,∠ABC=60°,E、F分别在CD、BC的延长线上,AE∥BD,EF⊥BC,DF=2,则EF的长为______.
题目内容:
如图,▱ABCD中,∠ABC=60°,E、F分别在CD、BC的延长线上,AE∥BD,EF⊥BC,DF=2,则EF的长为______.
优质解答
∵在平行四边形ABCD中,AB∥CD,∠ABC=60°,
∴∠DCF=60°,
又∵EF⊥BC,
∴∠CEF=30°,
∴CF=1 2
CE,
又∵AE∥BD,
∴AB=CD=DE,
∴CF=CD,
又∵∠DCF=60°,
∴∠CDF=∠DFC=60°,
∴CD=CF=DF=DE=2,
∴在Rt△CEF中,由勾股定理得:EF=CE2−CF2
=42−22
=12
=23
.
故答案为23
.
优质解答
∴∠DCF=60°,
又∵EF⊥BC,
∴∠CEF=30°,
∴CF=
1 |
2 |
又∵AE∥BD,
∴AB=CD=DE,
∴CF=CD,
又∵∠DCF=60°,
∴∠CDF=∠DFC=60°,
∴CD=CF=DF=DE=2,
∴在Rt△CEF中,由勾股定理得:EF=
CE2−CF2 |
42−22 |
12 |
3 |
故答案为2
3 |
本题链接: