首页 > 数学 > 题目详情
平面上有n(n≥3)个点任意三个点不在同一直线上,过任意三点作三角形,一共能作出多少个不同的三角形?1、 当仅有三个点时
题目内容:
平面上有n(n≥3)个点任意三个点不在同一直线上,过任意三点作三角形,一共能作出多少个不同的三角形?
1、 当仅有三个点时,可作―――个三角形;当有4个点时,可作―――个三角形;当有5个点时,可作―――个三角形.
2、 规律是什么(点的个数和可作出的三角形的个数关系)优质解答
1、 当仅有三个点时,可作1个三角形;当有4个点时,可作4个三角形;当有5个点时,可作10个三角形.
2、 规律是N个数和可作出的三角形CN(3)=N(N-1)(N-2)/6个.
1、 当仅有三个点时,可作―――个三角形;当有4个点时,可作―――个三角形;当有5个点时,可作―――个三角形.
2、 规律是什么(点的个数和可作出的三角形的个数关系)
优质解答
2、 规律是N个数和可作出的三角形CN(3)=N(N-1)(N-2)/6个.
本题链接: