首页 > 数学 > 题目详情
F椭圆C:x2+y2/2=1在y轴正半轴上的焦点,过F且斜率为负根号2的直线l与c交AB两点,点P满足OA+OB+OP=
题目内容:
F椭圆C:x2+y2/2=1在y轴正半轴上的焦点,过F且斜率为负根号2的直线l与c交AB两点,点P满足OA+OB+OP=0向量和
1)证明点P在C上
(2)设点P关于点O的对称点为Q,证明A,P,B,Q四点在同一圆上优质解答
已知椭圆c:x2/a2+y2/b2=1的离心率为根号3/2,过右焦点f且斜率为k的直线与c交与A.B两点,若AF=3FB.求k 2017-10-25
1)证明点P在C上
(2)设点P关于点O的对称点为Q,证明A,P,B,Q四点在同一圆上
优质解答
本题链接: