首页 > 数学 > 题目详情
【在三角形ABC中,AB=2根号5,AC=3,sinC=2sinA,求三角形ABC面积】
题目内容:
在三角形ABC中,AB=2根号5,AC=3,sinC=2sinA,求三角形ABC面积优质解答
为方便起见,设c=AB ,b=AC ,a=BC∵ AB=2根号5,AC=3,∴ c=2√5, b=3∵ sinC=2sinA利用正弦定理a/sinA=b/sinB=c/sinC∴ c=2a∴ a=√5∴ cosA=(b²+c²-a²)/(2bc)=(9+20-5)/(2*3*2√5)=2/√5∴ sinA=1/√5=... - 追问:
- 还有个问求cos2A+4分之派
- 追答:
- sinA=1/√5, cosA=2/√5 sin2A=2*sinA*cosA=4/5 cos2A=1-2sin²A=3/5 cos(2A+π/4) =cos2A*cos(π/4)-sin2A*sin(π/4) =(3/5)*(√2/2)-(4/5)*(√2/2) =-√2/10
优质解答
- 追问:
- 还有个问求cos2A+4分之派
- 追答:
- sinA=1/√5, cosA=2/√5 sin2A=2*sinA*cosA=4/5 cos2A=1-2sin²A=3/5 cos(2A+π/4) =cos2A*cos(π/4)-sin2A*sin(π/4) =(3/5)*(√2/2)-(4/5)*(√2/2) =-√2/10
本题链接: