求以两条直线l1:3x+2y+1=0,l2:5x-3y-11=0交点为圆心,且与直线3x+4y-20=0相切的圆的方程
2021-03-17 156次 反馈错误 加入收藏 正确率 : 100%
题目内容:
求以两条直线l1:3x+2y+1=0,l2:5x-3y-11=0交点为圆心,且与直线3x+4y-20=0相切的圆的方程
优质解答
由方程组3x+2y+1=0
5x--3y--11=0
解得圆心的坐标为(1,--2),
因为 圆与直线3x+4y--20相切,
所以 圆的半径=I3--8--20I/根号(9+16)
=25/5
=5,
所以 所求圆的方程为:(x--1)^2+(y+2)2=25.
本题链接: